COVID-19 X-ray Image Diagnostic with Deep Neural Networks

Gabriel Oliveira, Rafael Padilha, André Dorte, Luis Cereda, Luiz Miyazaki, Maurício Lopes and Zanoni Dias

Institute of Computing, University of Campinas, Campinas, SP, Brazil

November 24, 2020

1 Introduction

2 Dataset

- 4 Experimental Evaluation
- **5** Conclusions and Future Work

- COVID-19 has impacted on society, public health, and economy
- Artificial intelligence could help the fight against COVID-19
- Chest X-ray images and CT scans can be used for training machine classifiers
- CNNs pre-trained in other problems can achieve good results when applied on COVID-19 diagnostics [1, 2]
- In this work, we evaluated CNN architectures and traditional machine learning classifiers for predicting COVID-19, pneumonia, or healthy patients using chest X-ray images

Table: COVIDx [3]: distribution of patients and chest radiography images, considering Normal, Pneumonia, and COVID-19 diagnostics for the training and test sets.

	Patients		Image	Images	
	Train	Test	Train	Test	
Normal	7,966	100	7,966	100	
Pneumonia	5,444	98	5,459	100	
COVID-19	320	74	473	100	
Total	13,730	272	13,898	300	

< 1 k

(a) Normal

(b) Pneumonia

(c) COVID-19

< 4³ ►

Figure: Examples of X-rays from the COVIDx dataset [3].

Dataset

Figure: Examples of images with different patterns, such as medical devices connected to the patient, contour and volume of the breasts and noise.

Figure: Overview of our pipeline.

(a) Original (b) Rotation (c) Zoom (d) Vert. Shift (e) Horiz. Shift Figure: Data augmentation strategies applied during training.

CNNs architectures:

- DenseNet121
- EfficientNetB7
- InceptionV3
- MobileNetV2
- NASNetLarge
- ResNet50
- ResNet50V2
- Xception

Traditional ML Classifiers:

- Logistic Regression
- Random Forest
- SVM
- XGBoost

- Average of Probabilities
- Meta-classifiers using Probabilities
- Meta-classifiers using Deep Features

- Balanced dataset with 473 x-ray images of each class divided into 383 images for training and 90 images for validation without data augmentation
- Traditional machine learning classifiers with hyperparameters found through a grid search on the balanced set
- Neural Networks with transfer learning and frozen layers

Table: Accuracy in the balanced validation set and number of parameters for each evaluated models.

Model	Accuracy in validation (%)	Number of parameters
ResNet50	87.41	25,636,712
EfficientNetB7	84.81	66,658,687
MobileNetV2	81.85	3,538,984
DenseNet121	80.74	8,062,504
MobileNet	80.37	3,538,984
Random Forest	79.25	-
XGBoost	78.52	-
SVM-RBF	78.15	-
Xception	77.78	22,910,480
SVM-Poly	75.93	-
InceptionV3	74.07	23,851,784
NASNetLarge	72.22	88,949,818
ResNet50V2	70.37	25,613,800
Logistic Regression	68.89	-
SVM-Linear	68.15	-

- Full dataset with unbalanced classes divided into 80% for training and 20% for validation
- Weights for each class according to their size
- Images with data augmentation
- Convolutional neural networks with unfrozen layers

Table: Balanced accuracy in *Multi-class* and *Binary* classification.

Method	Multi-class		Bina	Binary	
	Accuracy in validation (%	Accuracy in (6) test (%)	Accuracy in validation (%)	Accuracy in test (%)	
Classifiers					
ResNet50	96.81	90.66	96.13	91.99	
EfficientNetB7	83.54	79.33	89.21	81.75	
MobileNetV2	90.01	82.66	97.87	90.25	
Random Forest	65.30	62.33	50.55	55.00	

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Table: Balanced accuracy in *Multi-class* and *Binary* classification.

	Multi-class		Binary	
Method	Accuracy in validation (%)	Accuracy in test (%)	Accuracy in validation (%)	Accuracy in test (%)
Classifiers				
ResNet50	96.81	90.66	96.13	91.99
EfficientNetB7	83.54	79.33	89.21	81.75
MobileNetV2	90.01	82.66	97.87	90.25
Random Forest	65.30	62.33	50.55	55.00
Ensemble - Probab	ilities			
Average	97.22	89.66	98.66	93.25
SVM-Linear	98.37	90.00	98.87	89.75
SVM-Poly	98.70	90.00	99.81	87.25
SVM-RBF	98.47	90.33	98.81	89.50
MLP	99.88	92.00	99.36	93.50
Random Forest	98.68	90.33	99.41	84.75

< □ > < 同 > < 回 > < 回 > < 回 >

3

Table: Balanced accuracy in *Multi-class* and *Binary* classification.

	Multi-class		Bina	Binary	
Method	Accuracy in validation (%	Accuracy in b) test (%)	Accuracy in validation (%)	Accuracy in test (%)	
Classifiers					
ResNet50	96.81	90.66	96.13	91.99	
EfficientNetB7	83.54	79.33	89.21	81.75	
MobileNetV2	90.01	82.66	97.87	90.25	
Random Forest	65.30	62.33	50.55	55.00	
Ensemble - Probabi	ilities				
Average	97.22	89.66	98.66	93.25	
SVM-Linear	98.37	90.00	98.87	89.75	
SVM-Poly	98.70	90.00	99.81	87.25	
SVM-RBF	98.47	90.33	98.81	89.50	
MLP	99.88	92.00	99.36	93.50	
Random Forest	98.68	90.33	99.41	84.75	
Ensemble - Deep Features					
SVM-Linear	97.67	89.66	99.43	89.75	
SVM-Poly	98.26	90.00	99.41	87.75	
SVM-RBF	98.34	90.00	99.38	89.50	
MLP	98.01	83.33	99.43	86.00	
Random Forest	95.35	88.00	96.82	84.74	

November 24, 2020 14 / 19

э

Experimental Evaluation - Full Dataset

(a) Multi-class Classification.

(b) Binary Classification.

Figure: Confusion matrix for ResNet50 and the best ensemble strategy in both classification scenarios for the test set.

- Transfer learning techniques can achieve good results by leveraging the generalization of the initial layers in a different domain
- Ensemble techniques improved the results compared to the standard convolutional networks

- Preprocessing steps:
 - Segmentation of the lung parts of the image
 - Filters to reduce noise
 - Images with high resolution
- Post-processing steps:
 - Explainability techniques
- Data collection

 Ali Narin, Ceren Kaya, and Ziynet Pamuk. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. arXiv:2003.10849, 2020.

[2] Ioannis D Apostolopoulos and Tzani A Mpesiana. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. *Springer J PESM*, 43:635–640, 2020.

 [3] Linda Wang and Alexander Wong.
COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray images. arXiv:2003.09871, 2020.

COVID-19 X-ray Image Diagnostic with Deep Neural Networks

Gabriel Oliveira, Rafael Padilha, André Dorte, Luis Cereda, Luiz Miyazaki, Maurício Lopes and Zanoni Dias

Institute of Computing, University of Campinas, Campinas, SP, Brazil

November 24, 2020